По-перше, ми додавати або віднімати члени з обох сторін, щоб відокремити константи та змінні від різних сторін рівняння. Потім ми спрощуємо, щоб ізолювати змінну. Нарешті, ми перевіряємо нашу відповідь, підставляючи її назад у вихідне рівняння.
Щоб розв’язати систему двох лінійних рівнянь із двома змінними за допомогою методу підстановки, ми маємо виконати наведені нижче кроки:
- Крок 1: Розв’яжіть одне з рівнянь для однієї змінної.
- Крок 2: Підставте це в інше рівняння, щоб отримати рівняння в термінах однієї змінної.
- Крок 3: Розв’яжіть це для змінної.
По-перше, є метод заміщення. Метод підстановки полягає в тому, що ви розв’язуєте одне рівняння для будь-якої змінної, а потім підставляєте розв’язок в інше рівняння. Потім є метод усунення. Метод елімінації полягає в тому, що ми додаємо або віднімаємо рівняння, щоб розв’язати змінну.
Щоб розв’язати рівняння (3/4)x + 2 = (3/8)x – 4, ми спочатку вилучимо дроби, помноживши обидві частини на найменше спільне кратне знаменників. Потім ми додаємо або віднімаємо члени з обох сторін рівняння, щоб згрупувати x-члени з одного боку та константи з іншого. Нарешті, ми розв’язуємо та перевіряємо як зазвичай.
Рівняння називається лінійним рівнянням із двома змінними, якщо воно записане у формі ax + by + c=0, де a, b & c — дійсні числа та коефіцієнти при x і y, тобто a і b відповідно, не дорівнюють нулю. Наприклад, 10x+4y = 3 і -x+5y = 2 є лінійними рівняннями з двома змінними.